
AWS Multi-Account, Multi-Region
Networking with Terraform

17 November 2020

Agenda

● Who are we?
● Problem Statement
● Tools
● Account and Network Diagram
● Terraform Solution

Who are we?

Eric Gerling, Senior DevOps Architect, Trility Consulting

Background as a full-stack cloud software and systems architect focused on the simplest solution
for the problem to be solved. Hands-on technical leadership with cloud architecture capacity,
systems administration, full-stack testing and development in the insurance, agribusiness, Internet
of Things, financial payments, and cable industries.

Fluent in cloud technologies and working on middle- and lower-tier technologies where security,
performance, scalability, and reliability are the most important invisible attributes no one asks for,
but everyone expects.

Who are we?

Nathan Levis, Solutions Architect, Trility Consulting

Nathan helps clients identify and craft solutions for clients to simplify, automate, and
secure their paths forward. He focuses on 1. Incremental progress across all aspects of
the professional environment, 2. Uses agile (little ‘a’, not big ‘A’) methodologies to
improve existing and future operations, 3. Leverages strong social and professional
skills to encourage team members to evaluate existing and future procedures and
behaviors, and 4. Strives to take a pragmatic and open-minded approach to every
situation.

AWS Certified Solutions Architect - Associate

Problem
Statement

How do I manage multiple AWS
accounts with resources spread across
multiple regions in a simple, cost
effective way? Desired attributes
include:

● Infrastructure as Code (Terraform)
● Single Source of Truth for AWS

Accounts
● Rapid deployment of new regions
● VPN Access with access to

dynamically created VPCs in
multiple regions

Problem Statement: Breakout
Infrastructure as Code
● All things in code, all the time,

for everything.
● Terraform

○ State File Management
○ IMPORT!!

Rapid Deployment of New Regions
● Active - Active/Passive/Warm
● Regulatory compliance constantly

changing
● Security also

Single Source of Truth for AWS Accounts
● Accounts are not static, they live and

breath
● Account creation for new projects

VPN Access with access to dynamically
created VPCs in multiple regions
● Dynamic Development Environments
● Data Analysts, Developer Access,

Production Support

Tools

● Terraform
● CI/CD Orchestration
● AWS Services (Organizations, IAM,

CloudTrail, Config, Lambda, and
many others)

Tools: Terraform
From the Hashicorp web site:
“Terraform is a tool for building, changing,
and versioning infrastructure safely and
efficiently.”

Cool.

● Execution Plans
● Resource Graphs
● Change Automation
● Automated and fast

What about …
● CloudFormation (AWS)
● Cloud Development Kit (AWS)
● Deployment Manager (GCP)
● ARM Templates (Azure)
● Chef/Puppet/Ansible

All good tools, no question. However,
multi-cloud is always part of the
conversation. Terraform is a single tool
teams can leverage across any cloud.

Tools: CI/CD Orchestration
Traditional Continuous
Integration/Continuous Deployment
● Take code from the developer, run

tests, scan for security
vulnerabilities, run more tests, test it
again, deploy it to production, repeat

Why is infrastructure any different?

Wait? Automate infrastructure
deployments? Are you crazy?

Common Tools
● Jenkins
● Concourse
● CircleCI
● AWS CodeBuild, CodeDeploy,

CodePipeline

Don’t forget! Your orchestration jobs
should be in code too, but that’s another
topic for another day.

Tools: AWS Services
Account Services
● Organizations
● CloudTrail
● Config
● Identity and Access Management
● S3
● CloudWatch

Networking Services
● Transit Gateway
● VPC
● AWS Client VPN
● Route 53
● Route 53 Resolver

Diagrams ● Master Account
● Sub, or Child, Accounts

Master
AWS

Account
Diagram

AWS
Sub-Account

Diagram

Putting It All
Together

Time to dive in and start building.

● Foundation
● State Files
● Workspaces
● Providers
● Modules
● Code

Putting It All Together: Foundation
Terraform
● CLI vs Terraform Cloud vs TFE
● Pin the Versions?

Source Code Management
● Terraform Modules

○ Single Repository
○ Multiple Repositories

● Core Terraform Code
○ Master Account
○ Sub Account
○ Transit VPC
○ Client VPN
○ DNS Zones

terraform {
 required_version = "0.12.12"

 required_providers {
 aws = "~> 2.3"
 }
}

Putting It All Together: State Files
State Files
● The Crown Jewels
● Lots of options, do not ever use local

storage. Ever.
● Security also.
● For AWS, can’t go wrong with S3

○ Versioning
○ Logging
○ Bucket Policy

● Number of State Files

Terraform Backend Configuration

Import
● Seriously - import

terraform {
 backend "s3" {
 bucket = "account-backend"
 key = "master_account"
 region = "us-east-2"
 encrypt = true
 }
}

Putting It All Together: Workspaces
Terraform Workspaces
● Collections of Infrastructure

○ Maximize Code Reuse

Terraform Workspaces
● Local
● Data sources
● Variables

locals {
 vpc_name = terraform.workspace == "default" ? "transit" : "transit-${terraform.workspace}"
 transit_gw_name = terraform.workspace == "default" ? "tgw" : "tgw-${terraform.workspace}"

 tags = {
 Owner = var.owner
 Workspace = terraform.workspace
 }
}

data "aws_caller_identity" "current" {}

data "aws_iam_account_alias" "current" {}

Putting It All Together: Providers
Terraform Providers
● Manages API Interactions
● Continuously growing and changing
● Can’t find one, write one
provider "aws" {
 region = "us-east-2"
}

provider "aws" {
 alias = "useast1"
 region = "us-east-1"
}

provider "aws" {
 alias = "uswest2"
 region = "us-west-2"
}

provider "aws" {
 region = var.region

 assume_role {
 role_arn = "${var.roles[terraform.workspace]}"
 }
}

provider "aws" {
 alias = "useast1"
 region = "us-east-1"

 assume_role {
 role_arn = "${var.roles[terraform.workspace]}"
 }
}

provider "kafka" {
 bootstrap_servers = ["localhost:9092"]
}

provider "google" {
 project = "newco-app"
 region = "us-central1"
}

Putting It All Together: Modules
iam_account_alias Module

Module Reference

module "account_alias" {
 alias = var.account_alias
 source = "git::https://gitserver/terraform-modules.git//iam_account_alias?ref=v1"
}

variable "alias" {
 description = "AWS Account Alias"
 type = string
}

resource "aws_iam_account_alias" "alias" {
 account_alias = var.alias
}

Putting It All Together: Modules
s3_bucket Multi-purpose Module

resource "aws_s3_bucket" "bucket" {
 bucket = var.name
 acl = var.acl
 region = var.region
 force_destroy = var.force_destroy
 tags = "${merge(map("Name", var.name), var.tags)}"

 versioning {
 enabled = var.object_versioning
 }

 server_side_encryption_configuration {
 rule {
 apply_server_side_encryption_by_default {
 sse_algorithm = var.sse_algorithm
 kms_master_key_id = var.kms_key_arn
 }
 }
 }

 dynamic "logging" {
 for_each = var.logging_bucket == "" ? [] : [var.logging_bucket]

 content {
 target_bucket = var.logging_bucket
 target_prefix = "${var.name}/"
 }
 }

 dynamic "lifecycle_rule" {
 for_each = var.lifecycle_ttl == null ? [] : var.lifecycle_ttl

 content {
 enabled = true
 prefix = lifecycle_rule.value.prefix
 tags = lifecycle_rule.value.tags
 expiration {
 days = lifecycle_rule.value.expiration_days
 }
 }
 }

 lifecycle {
 ignore_changes = [
 region,
]
 }
}

resource "aws_s3_bucket_public_access_block" "public_block" {
 count = var.s3_website == true || var.s3_301_redirect == true ? 0 : 1
 bucket = aws_s3_bucket.bucket.id
 block_public_acls = true
 block_public_policy = true
 ignore_public_acls = true
 restrict_public_buckets = true
}

Code

Questions?

Eric Gerling
Senior DevOps Architect
Trility Consulting
eric@trility.io

Nathan Levis
Solutions Architect
Trility Consulting
nathan.levis@trility.io

mailto:eric@trility.io
mailto:nathan.levis@trility.io

